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What Is Complexity Science? 
Knowledge of the Limits to Knowledge

Peter Allen

In a recent article (Allen, 2000), the underlying assumptions
involved in the modeling of situations were systematically pre-
sented. In essence, we attempt to trade the “complexity” of the
real world for the “simplicity” of some reduced representation.

The reduction occurs through assumptions concerning:

1 The relevant “system” boundary (exclude the less relevant).
2 The reduction of full heterogeneity to a typology of elements (agents

that might be molecules, individuals, groups, etc.).
3 Individuals of average type.
4 Processes that run at their average rate.

If all four assumptions can be made, our situation can be described by a
set of deterministic differential equations (system dynamics) that allow
clear predictions to be made and “optimizations” to be carried out. If the
first three assumptions can be made, then we have stochastic differential
equations that can self-organize, as the system may jump between differ-
ent basins of attraction that reflect distinct patterns of dynamical behav-
ior. With only assumptions 1 and 2, our picture becomes one of adaptive
evolutionary change, in which the pattern of possible attractor basins
alters and a system can spontaneously evolve new types of agent, new
behaviors, and new problems. In this case, naturally we cannot predict
the creative response of the system to any particular action we may take,
and the evaluation of the future “performance” of a new design or action
is extremely uncertain (Allen, 1988, 1990, 1994a, 1994b). In summary, a
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previous article (Allen, 2000) showed how the science of complex systems
could lead to a table concerning our limits to knowledge. If we now take
the different kinds of knowledge in which we may be interested con-
cerning a situation, we can number them according to:

1 What type of situation or object we are studying (classification: “pre-
diction” by similarity).

2 What it is “made of” and how it “works.”
3 Its “history” and why it is as it is.
4 How it may behave (prediction).
5 How and in what way its behavior might be changed (intervention

and prediction).

We can then establish Table 1, which therefore in some ways provides us
with a very compressed view of the science of complexity. 

The idea behind the “modeling” approach is not that it should create true
representations of “reality.” Instead, it is seen as one method that leads to
the provision of causal “conjectures” that can be compared with and
tested against reality. When they appear to fit that reality, we may feel
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Assumptions
Type of model

Type of system

Composition

History

Prediction

Intervention
and prediction

2
Evolutionary

Can change
structurally

Can change
qualitatively

Important in
all levels of
description
Very limited
Inherent
uncertainty
Very limited
Inherent
uncertainty

3
Self-organizing

Can change its
configuration
and
connectivity
Can lead to
new, emergent
properties
Is important at
the system
level
Probabilistic

Probabilistic

4
Nonlinear
dynamics
(including
chaos)
Fixed

Yes

Irrelevant

Yes

Yes

5
Equilibrium

Fixed

Yes

Irrelevant

Yes

Yes

Table 1 Systematic knowledge concerning the limits to systematic knowledge
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temporarily satisfied; when they disagree with reality, we can set about
examining why the discrepancy occurred. This model is our “interpretive
framework” for sense making and knowledge building. It will almost cer-
tainly change over time as a result of our experiences. It is developed in
order to answer questions that are of interest to the developer, or the
potential user, and both the model and the questions will change over
time. The questions that are addressed influence the variables that are
chosen for study, the mechanisms that are supposed to link them, the
boundary of the system considered, and the type of scenarios and events
that are explored. The model is not reality, but merely a creation of the
modeler that is intended to help reflect on the questions that are of inter-
est. The process involved is not telling us whether our current model is
true or false, but rather whether it appears to work or not. If it does, then
it will be useful in answering the questions asked of it. If it doesn’t, then
it is telling us that we need to rethink our interpretive framework, and
that some new conjecture is needed.    

The usefulness may well come down to a question of the spatio-
temporal scales of interest to the modeler or user. For example, if we com-
pare an evolutionary situation to one that is so fluid and nebulous that
there are no discernible forms, and no stability for even short times, we
see that what makes an evolutionary model possible is the existence of
quasi-stable forms for some time at least. If we are only interested in
events over very short times compared to those usually involved in struc-
tural change, it may be perfectly legitimate and useful to consider the
structural forms as fixed. This doesn’t mean that they are, it just means
that we can proceed to do some calculations about what can happen over
the short term, without having to struggle with how forms may evolve and
change. Of course, we need to remain conscious that over a longer period
forms and mechanisms will change and that our actions may well be
accelerating this process, but nevertheless it can still mean that some self-
organizing dynamic is useful. 

Equally, if we can reasonably assume not only that system structure is
stable but in addition that fluctuations around the average are small, we
may find that prediction using a set of dynamic equations provides useful
knowledge. If fluctuations are weak, it means that large fluctuations
capable of kicking the system into a new regime/attractor basin are very
rare and infrequent. This gives us some knowledge of the probability of
this occurring over a given period. So, our model can allow us to make
predictions about the behavior of a system as well as the associated prob-
abilities and risk of an unusual fluctuation occurring and changing the
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regime. An example of this might be the idea of a 10-year event and a 100-
year event in weather forecasting, where we use historical statistics to
suggest how frequent critical fluctuations are. Of course, this assumes an
overall “stationarity” of the system, supposing that processes such as cli-
mate change are not happening. Clearly, when 100-year events start to
occur more often, we are tempted to suppose that the system is not sta-
tionary, and that climate change is occurring. However, this would be
“after the facts,” not before. 

These are examples of the usefulness of different models, and the
knowledge with which they provide us, all of which are imperfect and not
strictly true in an absolute sense, but some of which are useful. Systematic
knowledge therefore should not be seen in absolute terms, but as being
possible for some time and some situations, provided that we apply our
“complexity-reduction” assumptions honestly. Instead of simply saying
that “all is flux, all is mystery,” we may admit that this is so over the very
long term (who wants to guess what the universe is for?). However, for
some times of interest and for some situations, we can obtain useful knowl-
edge about their probable behavior, and this can be updated by continu-
ally applying the “learning” process of trying to “model” the situation. 

INTERACTIVE SUBJECTIVITY

The essence of complex systems is that they represent the “joining” of
multiple subjectivities—multiple dimensions interacting with over-
lapping but not identical multiple dimensions. In a traditional “system
dynamics” view, a flow diagram represents a series of reservoirs that are
connected by pipes and a unidimensional flow takes place between them.
Typically, some simple laws express the rate of flow between the reser-
voirs, possibly as a function of the height of water. Instead of this, we find
that the real world consists of connected entities that have their own per-
ceptions, inner worlds, and possibilities of action. We may contrast a flow
diagram of money or water with an “influence” diagram that notes that
one component “affects” another. 

The water flowing through (a) in Figure 1 is totally different and sub-
ject to accountability rules compared to system (b), which shows how a
company, its products, and its potential customers interact. Let us con-
sider briefly the three “simple” arrows of system (b).

1 Potential customers influence the company to design a product that
they think will be successful. But, this requires the company to “seek”
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information about potential customers, and therefore to think of ways
to do this. It requires the generation of “knowledge” or “belief” about
what kind of customers exist, and what they may be looking for, and
this essentially must be based on a series of “conjectures” that the
company must make about the nature of the different subjectivities in
the environment. In essence, the company must “gamble” that its con-
jectures about possible customers and their desires are sufficiently
correct to make enough of them buy the product.

2 The company produces a particular product. This results from the
beliefs at which the company has arrived concerning the kind of cus-
tomers that are “out there” and the qualities they are looking for at the
price they are willing to pay. The arrow therefore encompasses the
way in which the marketing people in the company have been able to
affect the designer and the new product development process to try
to produce the “right thing at the right price.” Secondly, it implies that
the designer knows how to put components together in such a way
that the product or service “delivers” what was hoped. 

3 The product then attracts, or fails to attract, potential customers.
However, this requires the potential customers to “look at” the prod-
uct and see what it might do for them, and at what cost. Customers
must be able to translate the attributes of the product or service into
the fulfillment of some need or desire that they have. The “inter-
action” between the product and the customer must be “engineered”
by the company so that there will be some encounter with potential
customers. The locations and timings must therefore be suited to the
movements and attention of the potential target customers. 

4 The arrow from the customer to the company finally consists of a flow
of money that occurs when a potential customer becomes an actual
customer. This part is physical and real and can be stored easily on a
database. However, it is the “result” of a whole lot of less palpable
processes, of conjecture, of characterization, and of information analy-
sis, most of which do not correspond to flows of anything accountable.  
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Figure 1 Comparison between a simple and a complex system
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What is important is that inside each “box” there are multiple possible
behaviors. Ultimately, this comes down to the existence of internal micro-
diversity that gives each box a range of possible responses. These are
tried out and the results used either to reinforce or to challenge their use.
Each box is therefore trying to make sense of its environment, which
includes the other boxes and their behaviors. 

The real issue is that the boxes marked “company” and “potential cus-
tomer” actually enclose different worlds. The dimensions, goals, aims,
and experiences in these boxes are quite different. Most importantly, each
box contains a whole range of possible behaviors and beliefs, and the
agents “inside” may have mechanisms that enable them to find out which
ones work in the environment. What this means is dealt with in the next
section. When the boxes interact, therefore, as reflected in some simple
“arrows” of influence, what we really have is the communication of two
different worlds that inhabit different sets of dimensions. However, to
“successfully” connect two different “boxes” so as to achieve some joint
task requiring cooperation demands some human intervention to “trans-
late” the meaning that exists in one space into the language and meaning
of the other. 

The simple “arrow” of connection, therefore, will not be a “simple
connection,” but instead may require a person who is capable of speaking
across the boxes and who possibly has experience of both worlds. It is also
the core reason explaining the need for interdisciplinary studies. Each
discipline takes a partial and particular view of a situation, and in so doing
promotes analysis and expertise at the expense of the ability of integra-
tion, synthesis, and a holistic view. Management is a domain in which a
multidisciplinary, integrative approach is required if we are to get real
results in dealing with a real-world problem. The science of complex sys-
tems is extremely important for management and for policy, since only
with an integrated, multidimensional approach will advice be related suc-
cessfully to the real-world situation. This may indeed spell the limits to
knowledge and turn us from the attractive but misleading mirage of
prediction.

STRUCTURAL ATTRACTORS

If we consider the use of the word “attractor” in nonlinear dynamics, its
meaning is associated with the long-term destination of system trajecto-
ries. These can either end at a steady final value—a point attractor—or in
stationary cyclic or chaotic motion. The attractor in which the system
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trajectory ends up will depend on the “richness” of the possible behav-
iors generated by the particular nonlinear equations, and the point from
which the system starts. So, we may have a situation as shown in Figure
2, where there are several attractors of different types, and the equations
drive the system toward the long-term stationary attractor of the “basin of
attraction” in which it starts. 

In fact, these attractors correspond to the end states of a given dynamic.
The variables in play are fixed and do not change. Only their values
change and so the “dimensionality” of the system remains constant.
However, in Table 1 we see that this corresponds only to systems that can
legitimately be described by a set of dynamical equations describing the
changes over time in the values of a given set of variables. Even if we con-
sider self-organizing systems that have probabilistic rates of interactions,
the noise can simply push the system over the boundaries separating
attractor basins, leading to changes in the configuration and behavioral
regime of the given set of variables. Even then, the only dimensional
changes that can occur are those associated with the emergent properties
of the whole system. The “internal dimensions” of the interacting vari-
ables are not changed. 

What happens if we consider the evolution of a system that has dif-
ferent types of individual interacting—different subjectivities—with dif-
ferent dimensions and attributes. We may say that if all the possible types
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Figure 2 An imaginary view of the possible attractors of a particular set
of nonlinear equations. All the attractors correspond to stationary, cyclic,
or chaotic values of x and y. These are not “structural attractors.”
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were present simultaneously, we would have an enormously diverse sys-
tem with a vast range of attributes and dimensions present. However,
evolution results in a selection process that reduces the types of individ-
ual or agent that can inhabit the system to those that can coexist with or
have synergy with the other types present. 

For this simple model, we consider the interaction of populations of
agents with different attributes and behaviors, which may affect, posi-
tively or negatively, the populations with which they cohabit. This leads
to a model in which the “payoffs” that are found for the behavior exhib-
ited by a particular population type depend on the other behaviors pres-
ent in the system. Instead of the problem being one in which the
evolutionary task is to explore and climb a fixed landscape of “fitness” or
“payoff,” the landscape itself is changed by the presence of the different
players in the game. 

In order to examine how populations may evolve over time, let us
consider 20 possible populations, agent types, or behaviors. In the space
of “possibilities,” numbered 1 to 20, closely similar behaviors are consid-
ered to be most in competition with each other, since they occupy a sim-
ilar niche in the system. Any two particular populations, i and j, may have
an effect on each other. This could be positive, in that side effects of the
activity of j might in fact provide conditions or effects that help i. Of
course, the effect might equally well be antagonistic, or neutral.
Similarly, i may have a positive, negative, or neutral effect on j. For our
simple model, therefore, we shall choose values randomly for all the pos-
sible interactions between all i and j; fr describes the average strength of
these, and 2*(rnd –.5) is a random number between –1 and +1.

The effect of behavior i on j will be proportional to the size of the popula-
tion i. If i is absent, there will be no effect. Similarly, if j is absent, it can-
not feel the effect of i. For each of 20 possible types we choose the possible
effect i on j and j on i randomly, where random(j,i) is a random number
between 0 and 1, and fr is the strength of the interaction. Clearly, on aver-
age we shall have equal numbers of positive and negative interactions.

Each population that is present will experience the net effect that
results from all of the other populations that are also present. Similarly, it
will affect those populations by its presence.  
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The sum is over j including i, and so we are looking at behaviors that in
addition to interacting with each other also feed back on themselves.
There will also always be a competition for underlying resources, which
we shall represent by:

At any time, then, we can draw the landscape of synergy and antagonism
that is generated and experienced by the populations present in the sys-
tem. We can therefore write down the equation for the change in popu-
lation of each of the xi. It will contain the positive and negative effects of
the influence of the other populations present, as well as the competition
for resources that will always be a factor, and also the error-making diffu-
sion through which populations from i create small numbers of offspring
in i+1 and i–1. 

where f is the fidelity of reproduction. The first group of terms corre-
sponds to growth of x(i), due to natural growth, and as inward diffusion
from the populations of type x–1 and x+1. The growth rate reflects the
“net effects” (synergy and antagonism) on x(i) of the presence of popula-
tions other than x(i). There are limited resources (N) available for any
given behavior, so it cannot grow infinitely. The final term merely reflects
the natural lifetime of any active x.       

Let us consider a typical simulation that this model produces. If we
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Figure 3 Each pair of possible behaviors, types i and j, has several possi-
ble effects on each other. First, they compete for resources. But secondly,
each one may have effects that are either antagonistic, neutral, or syner-
getic on the other.

j)),Distance(i+(1

x(j)
 = )Crowding(i j ρ
Σ

dx(i) = b × (fx(i) + 0.5 × (1 – f) × x(i – 1) + 0.5 × (1 – f) × x(i + 1)) ×
dt

(1 + 0.04 × Neteff(i)) × (1 – Crowding(i)/N) – mx(i)
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start initially with a single population present, for example x(11) = 5 and
all other populations are 0. If we plot the net effect of this population on
the other 19 possible populations it will provide a simple one-
dimensional “landscape” showing the potential synergy/antagonism that
would affect each population if it were to appear. The only population ini-
tially present is x(11) and therefore the evolutionary landscape in which
it sits is in fact that which it creates itself. No other populations are yet
present to contribute to the overall landscape of mutual interaction. 

The system rapidly reaches a steady state with the low population of 44.
The competition per individual is over 30 units and symbiosis per indi-
vidual is only 6.

If the same simulation is repeated with the same hidden pair inter-
actions and the same initial conditions, but this time there is a 2 percent
“exploration” from any population into the adjacent character cells, then
the result is as shown in Figure 5 and 6 overleaf. We see that the per-
formance of the system increases to support a population of 72, the com-
petition experienced per individual falls to 19, and the symbiosis per
individual rises to 26.    

What matters, then, is how the population 11 affects itself. This may
have positive or negative effects depending on the random selection
made at the start of the simulation. However, in general the population 11
will grow and begin to “diffuse” into the types 10 and 12. Gradually, the
landscape will reflect the effects that 10, 11, and 12 have on each other,
and the diffusion will continue into the other possible populations. Hills
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Figure 4 With no exploration in character space, fidelity f = 1, the sys-
tem remains homogeneous, but its performance will only support a popu-
lation of 44.
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in the landscape will be climbed by the populations, but as they climb
they change their behavior and therefore change the landscape for them-
selves and the others. Figures 5 and 6 show this process taking place over
time. 

However, we can ask whether this “structural attractor” involving the
reduced dimensions  and attributes associated with the populations that
coexist in the attractor is the only one possible for a given set of potential
interactions between i and j. The answer is no. There are several attrac-
tors possible and they involve different populations, and different dimen-
sions and attributes. They are qualitatively different from the first
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Figure 5 The initial population and evolutionary landscape of our simu-
lation (Time 16).

Figure 6 The sequence of events (times 229, 720, 1520, and 4892) that lead
to a structural attractor involving populations 2, 6, 9, 12, 15, 19, and 20. 
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attractor. For example, in Figure 7 we see a stable structure that results
when the same system as before is started from x(1) instead of x(11).  

Clearly, this shows us that the dynamics are path dependent and so, even
with the same potential interactions, qualitatively different situations can
emerge. Obviously, if we choose a different set of pair interactions to
“explore” with our model, we shall find different attractors. 
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Figure 7 An alternative outcome for identical pair interactions, but for
an initial seed placed at population 1 instead of 11. This involves 4, 9,
10, 17, 19, and 20. 

Figure 8 If there are different pair interactions between potential popu-
lations, the model generates a different set of attractors. 
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IMPLICATIONS: WHAT IS A COMPLEX SYSTEM? 

There are several important points about these results. The first is that
they are generic and the results apply very generally. If we cannot make
assumptions 3 and 4 mentioned in the introduction (average behavior,
smooth processes), which take out the microdiversity and idiosyncracy of
real life agents, actors, and objects, we automatically obtain the emer-
gence of a structural attractor. This is a complex system of interdepend-
ent behaviors whose attributes are on the whole synergetic. These have
better performance than their homogeneous ancestors, but are less
diverse than if all “possible” behaviors were present. They correspond to
the emergence of hypercycles in the work of Eigen and Schuster (1979).
Those present result from the particular history of search undertaken,
and on their synergy. In other words, a structural attractor is the emer-
gence of a set of interacting factors that have mutually supportive, com-
plementary attributes.  

What are the implications of these structural attractors?

� Search carried out by the “error-making” diffusion in character space
leads to vastly increased performance of the final object. Instead of a
homogeneous system, characterized by intense internal competition
and low symbiosis, the development of the system leads to much
higher performance, and one that decreases internal competition and
increases synergy. 

� The whole process leads to the evolution of a complex, a “community”
of agents whose activities, whatever they are, have effects that feed
back positively on themselves and the others present. It is an emer-
gent “team” or “community” in which positive interactions are greater
than the negative ones. 

� The diversity, dimensionality, and attribute space occupied by the
final complex are much greater than the initial homogeneous starting
structure of a single population. However, they are much less than the
diversity, dimensionality, and attribute spaces that all possible popu-
lations would have brought to the system. The structural attractor
therefore represents a reduced set of activities from all those possible
in principle. It reflects the “discovery” of a subset of agents whose
attributes and dimensions have properties that provide positive feed-
back. This is different from a classical dynamic attractor that refers to
the long-term trajectory traced by the given set of variables. Here, our
structural attractor concerns the emergence of variables, dimensions,
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and attribute sets that not only coexist but actually are synergetic. 
� A successful and sustainable evolutionary system will clearly be one

in which there are freedom and encouragement for the exploratory
search process in behavior space. The system can generate a fairly sta-
ble community of agents or actors by having the freedom to explore.
Also, the self-organization of our system leads to a highly cooperative
system, where the competition per individual is low, but where loops
of positive feedback and synergy are high. In other words, the free
evolution of the different populations, each seeking its own growth,
leads to a system that is more cooperative than competitive. The
vision of a modern, free-market economy leading to, and requiring, a
cut-throat society where selfish competitivity dominates, is shown to
be false, at least in this simple case. 

The most important point is the generality of the model presented above.
The model concerns the exploration of possible behaviors by agents, each
with their own characteristics and dimensions, and a selection process
that retains the successful experiments and suppresses the unsuccessful.
Clearly, this situation characterizes almost any group of humans: families,
companies, communities, etc., but only if the exploratory learning is per-
mitted will the evolutionary emergence of structural attractors be possi-
ble. If we think of an artifact, some product resulting from a design
process, then there is also a parallel with the emergent structural attrac-
tor. A product is created by bringing together different components in
such a way as to generate some overall performance. But, there are sev-
eral dimensions to this performance, concerning different attributes.
These, however, are correlated so that a change that is made in the design
of one component will have consequences for the performance in differ-
ent attribute spaces. Some may be made better and some worse. 

Our emergent structural attractor is therefore relevant to understand-
ing what successful products are and how they are obtained. Clearly, a
successful product is one that has attributes that are in synergy, and that
lead to a high average performance. From all the possible designs and
modifications, we seek a structural attractor that has dimensions and
attributes that work well together. This is arrived at by R&D that must
imitate the exploratory search of possible modifications and concepts that
is “schematically represented” by our simple model above. A successful
design for an automobile, aircraft, or even a simple wine glass will be a
“structural attractor” within the space of possible designs, techniques,
and choices that have emerged through a search process. 
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This shows us that although a “wineglass” is not itself a complex system,
it is produced by a complex system. The complex system searches and
discovers what combinations of shape, thickness, glass composition, etc.
lead to attributes that are mutually compatible and desired. Part of the
complex system that produces the wine glass is about the technology and
production processes that lead to the attributes of the emergent objects.
This is why the organizational forms, the technologies, and the skill bases
that underlie wine glasses over time will in fact evolve through successive
stages, just like our simple model above.

However, although our model shows us how the presence of explo-
ration in character space will lead to emergent objects and systems with
improved performance, it is still true that we cannot predict what they
will be. Mathematically, we could solve our equations to find the values
of the variables for an optimal performance. But, we do not know which
variables will be present, and therefore we do not know which equations
to solve or optimize. In our model we used random numbers to choose
pair-wise interactions in an unbiased way, but in fact in a real problem
these are not “random” but reflect the underlying physical, psychological,
and behavioral reality of the processes and components in question. By
considering the underlying reality, we could estimate these values for
each pair and then see what kind of structural attractors our simulation
might produce. This would lead to a “cladistic diagram” (a diagram show-
ing evolutionary history), suggesting how a system had changed and
evolved structurally over time. It would generate an evolutionary history
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Figure 9 Imaginary pair-wise attribute interaction table for a “wine
glass.” This would replace our “random” assignment in the general model
above.
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of both artifacts and the organizational forms that underlie their produc-
tion (McKelvey, 1982, 1994; McCarthy, 1995; McCarthy, Leseure,
Ridgeway, and Fieller, 1997).    

Another important point, particularly for scientists, is that it would be
extremely difficult to discern the “correct” model equations, even for our
simple 20-population problem, from observing the population dynamics
of the system. Because any single behavior could be playing a positive or
negative role in a self, or pair or triplet etc., interaction, it would be
impossible to “untangle” its interactions and write down its equations
simply by noting the population’s growth or decline. Despite the diffi-
culty of an “observing scientist” predicting the structural attractor, the
system itself can generate one quite easily. All it needs is to have the
microdiversity of its error-making search process running, and it will find
stable arrangements of multiple actors. It will discover a balance between
the agents in play and the interactions that they bring with them. But,
although the system can do this automatically, it does not mean that we
can know what the web of interactions really is. 

This certainly poses problems for the rational analysis of situations,
since this must rely on an understanding of the consequences of the dif-
ferent interactions that are believed to be present. We cannot really know
from the decontextualized data of growth and decline how the circles of
influence really operate. Our only choice might be to ask the actors
involved, in the case of a human system. And this, in turn, would raise the
question of whether people really understand the foundations that sus-
tain their own situation, and the influences of the functional, emotional,
and historical links that build, maintain, and cast down organizations and
institutions. The loops of positive feedback that build structure introduce
a truly collective aspect to any profound understanding of their nature,
and this will be beyond any simple rational analysis, used in a goal-seek-
ing, local context.        

CONCLUSION

The science of complex systems is about systems whose internal structure
is not reducible to a mechanical system. In particular, it is about con-
nected complex systems, for which the assumptions of average types and
average interactions are not appropriate and are not made. Such systems
coevolve with their environment, being “open” to flows of energy, matter,
and information across whatever boundaries we have chosen to define.
These flows do not obey simple, fixed laws, but instead result from the
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internal “sense making” going on inside them, as experience, conjectures,
and experiments are used to modify the interpretive frameworks within.
Because of this, the behavior of the systems with which each system is
coevolving are necessarily uncertain and creative, and is not best repre-
sented by some predictable, fixed trajectory. This takes some steps
toward the “postmodern” point of view. But, as Cilliers (1998) indicates,
the original definition of postmodernism (Lyotard, 1984) does not take us
to the situation of total subjectivity where no assumptions can be made,
but rather to the domain of evolutionary complex systems discussed in
this article. 

Instead of a fixed landscape of attractors, and a system operating in
one of them, we have a changing system, moving in a changing landscape
of potential attractors. Provided that there is an underlying potential of
diversity, then creativity and noise (supposing that they are different) pro-
vide a constant exploration of “other” possibilities. Our simple model
only supposed 20 possible underlying behaviors, but obviously in any
realistic human situation the number would be very large. In dealing with
a changing environment, therefore, we find a “law of excess diversity” in
which system survival in the long term requires more underlying diver-
sity than would be considered requisite at any time. Some of these possi-
ble behaviors mark the system and alter the dimensions of its attributes,
leading to new attractors and new behaviors, toward which the system
may begin to move but at which it may never arrive, as new changes may
occur “on the way.” The real revolution is not therefore about a neo-
classical, equilibrium view as opposed to nonlinear dynamics having
cyclic and chaotic attractors, but instead is about the representation of the
world as a nonstationary situation of permanent adaptation and change.
The picture we have arrived at here is one that Stacey et al. (2000) refer
to as a “transformational teleology,” in which potential futures (patterns of
attractors and of pathways) are being transformed in the present. The
landscape of attractors we may calculate now is not in fact where we shall
go, because it is itself being transformed by our present experiences.   

The macro-structures that emerge spontaneously in complex systems
constrain the choices of individuals and fashion their experience. Behaviors
are being affected by “knowledge” and this is driven by the learning expe-
rience of individuals. Each actor is coevolving with the structures resulting
from the behavior and knowledge/ignorance of all the others, and surprise
and uncertainty are part of the result. The “selection” process results from
the success or failure of different behaviors and strategies in the competi-
tive and cooperative dynamical game that is running. 
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However, there is no single optimal strategy. What emerge are struc-
tural attractors, ecologies of behaviors, beliefs, and strategies, clustered in
a mutually consistent way, and characterized by a mixture of competition
and symbiosis. This nested hierarchy of structure is the result of evolu-
tion and is not necessarily “optimal” in any way, because there is a multi-
plicity of subjectivities and intentions, fed by a web of imperfect
information and diverse interpretive frameworks. In human systems, at
the microscopic level, behavior reflects the different beliefs of individu-
als based on past experience, and it is the interaction of these behaviors
that actually creates the future. In so doing, it will often fail to fulfill the
expectations of many of the actors, leading them either to modify their
(mis)understanding of the world, or alternatively simply leave them per-
plexed. Evolution in human systems is therefore a continual, imperfect
learning process, spurred by the difference between expectation and
experience, but rarely providing enough information for a complete
understanding. 

Although this sounds tragic, it is in fact our salvation. It is this very
“ignorance” or multiple misunderstandings that generates microdiversity,
and leads therefore to exploration and (imperfect) learning. In turn, the
changes in behavior that are the external sign of that “learning” induce
fresh uncertainties in the behavior of the system, and therefore new igno-
rance (Allen, 1993). Knowledge, once acted on, begins to lose its value.
This offers a much more realistic picture of the complex game that is
being played in the world, and one that our models can begin to quantify
and explore.  

In a world of change, which is the reality of existence, what we need
is knowledge about the process of learning. From evolutionary complex
systems thinking, we find models that can help reveal the mechanisms of
adaptation and learning, and that can also help imagine and explore pos-
sible avenues of adaptation and response. These models have a different
aim from those used operationally in many domains. Instead of being
detailed descriptions of existing systems, they are more concerned with
exploring possible futures and the qualitative nature of these. They are
also more concerned with the mechanisms that provide such systems
with the capacity to explore, to evaluate, and to transform themselves
over time. They address the “what might be,” rather than the “what is” or
“what will be.” It is the entry into the social sciences of the philosophical
revolution that Prigogine wrote about in physics some 25 years ago. It is
the transition in our thinking from “Being to Becoming.” It is about mov-
ing from the study of existing physical objects using repeatable objective
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experiments, to methods with which to imagine possible futures and with
which to understand how possible futures can be imagined. It is about
system transformation through multiple subjective experiences, and their
accompanying diversity of interpretive, meaning-giving frameworks. 

Reality changes, and with it experiences change also. In addition,
however, the interpretive frameworks or models people use change, and
what people learn from their changed experiences is transformed.
Recognizing these new “limits to knowledge,” therefore, should not
depress us. Instead, we should understand that this is what makes life
interesting, and what life is, has always been, and will always be about.   
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